DocumentCode :
2488403
Title :
Growing neural gas for temporal clustering
Author :
Sledge, Isaac J. ; Keller, James M.
Author_Institution :
Electr. & Comput. Eng. Dept., Univ. of Missouri, Columbia, MO
fYear :
2008
fDate :
8-11 Dec. 2008
Firstpage :
1
Lastpage :
4
Abstract :
Conventional clustering techniques provide a static snapshot of each vectorpsilas commitment to every group. With additive datasets, however, existing methods may not be sufficient for adapting to the presence of new clusters or even the merging of existing data-dense regions. To overcome this deficit, we explore the use of growing neural gas for temporal clustering and provide evidence that this new algorithm is capable of detecting cluster structures that incrementally emerge.
Keywords :
pattern clustering; set theory; cluster structures; data-dense regions; growing neural gas; temporal clustering; Clustering algorithms; Clustering methods; Data analysis; Hebbian theory; Humans; Maximum likelihood estimation; Merging; Partitioning algorithms; Prototypes; Virtual colonoscopy;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition, 2008. ICPR 2008. 19th International Conference on
Conference_Location :
Tampa, FL
ISSN :
1051-4651
Print_ISBN :
978-1-4244-2174-9
Electronic_ISBN :
1051-4651
Type :
conf
DOI :
10.1109/ICPR.2008.4761768
Filename :
4761768
Link To Document :
بازگشت