DocumentCode :
2489053
Title :
Segmentation of Medical Image Using a Statistical Technique and Its 3D Visualization
Author :
Lee, Myung-Eun ; Park, Soon-Young ; Cho, Wan-Hyun ; Kim, Soo-Hyung
Author_Institution :
Chonnam Nat. Univ., Kwangju
fYear :
2007
fDate :
23-24 Nov. 2007
Firstpage :
264
Lastpage :
268
Abstract :
We present an automatic segmentation and its visualization method for medical image. First, the statistical segmentation consists of two steps: number detection of clusters composing an image and parameter estimation of a statistical model. Here we use the morphological operations to determine automatically the number of clusters or objects composing a given image without any prior knowledge and adopt the Gaussian mixture model (GMM) to characterize an image statistically. Next, the Deterministic Annealing Expectation Maximization algorithm is employed to estimate the parameters of the GMM. Finally, we use a modified marching cubes algorithm to visualize the extracted images. The experimental results show that our proposed method can extract and visualize exactly the human organs from the CT image.
Keywords :
Gaussian processes; data visualisation; deterministic algorithms; expectation-maximisation algorithm; feature extraction; image segmentation; medical image processing; parameter estimation; pattern clustering; rendering (computer graphics); 3D visualization; Gaussian mixture model; clustering algorithm; deterministic annealing expectation maximization algorithm; image extraction; marching cubes algorithm; medical image segmentation; parameter estimation; rendering technique; statistical technique; Biomedical imaging; Clustering algorithms; Computed tomography; Histograms; Image reconstruction; Image segmentation; Medical diagnostic imaging; Parameter estimation; Pixel; Visualization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Technology Convergence, 2007. ISITC 2007. International Symposium on
Conference_Location :
Joenju
Print_ISBN :
0-7695-3045-1
Electronic_ISBN :
978-0-7695-3045-1
Type :
conf
DOI :
10.1109/ISITC.2007.26
Filename :
4410647
Link To Document :
بازگشت