• DocumentCode
    2491653
  • Title

    Compositional generative mapping of structured data

  • Author

    Bacciu, Davide ; Micheli, Alessio ; Sperduti, Alessandro

  • Author_Institution
    Dipt. di Inf., Univ. di Pisa, Pisa, Italy
  • fYear
    2010
  • fDate
    18-23 July 2010
  • Firstpage
    1
  • Lastpage
    8
  • Abstract
    We introduce a compositional generative model for topographic mapping of tree-structured data. It exploits a scalable bottom-up hidden tree Markov model to achieve a recursive topographic mapping of hierarchical information. The model allows for an efficient exploitation of contextual information from shared substructures by recursive upward propagation on the tree structure and by allowing it to distribute across the map. Experimental results show that the model yields to a topographically ordered mapping of the substructures in the input data.
  • Keywords
    Markov processes; data visualisation; self-organising feature maps; tree data structures; compositional generative mapping; hierarchical information; recursive topographic mapping; recursive upward propagation; scalable bottom-up hidden tree Markov model; tree-structured data; Data models; Data visualization; Hidden Markov models; Joints; Lattices; Markov processes; Switches;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks (IJCNN), The 2010 International Joint Conference on
  • Conference_Location
    Barcelona
  • ISSN
    1098-7576
  • Print_ISBN
    978-1-4244-6916-1
  • Type

    conf

  • DOI
    10.1109/IJCNN.2010.5596606
  • Filename
    5596606