DocumentCode :
2492396
Title :
Identify more non-golay complementary sequences for OFDM with low PMEPR using multi-dimensional root pairs
Author :
Wang, Yajun ; Zhao, Cheng ; Chen, Wen ; Li, Jun
Author_Institution :
Dept. of Electron. Eng., Shanghai Jiaotong Univ., Shanghai, China
fYear :
2009
fDate :
26-28 Aug. 2009
Firstpage :
1
Lastpage :
5
Abstract :
Recently, sub-root pairs and sequences are introduced to identify Davis-Jedwab (DJ) codes, non-Davis-Jedwab (non-DJ) Golay complementary sequences (GCS) and non-Golay complementary sequences (non-GCS) for OFDM with low PMEPR. In this paper, we extend sub-root pairs to super-root pairs. A discrete version of super-root pairs called multi-dimensional root pairs are used to build arbitrarily interleaving Boolean functions of long length. The newly identified arbitrarily interleaving Boolean functions can produce more non-DJ GCS and non-GCS with PMEPR at most pre-chosen positive number not always being a power of 2. In this way, we propose an efficient method to identify more codes with low PMEPR for OFDM.
Keywords :
Boolean functions; Golay codes; OFDM modulation; interleaved codes; sequences; DJ codes; Davis-Jedwab codes; OFDM; PMEPR; arbitrarily interleaving Boolean functions; multidimensional root pairs; nonDJ GCS; nonDavis-Jedwab Golay complementary sequences; nonGolay complementary sequences; peak to mean envelope power ratio; sub-root pairs; super-root pairs; Boolean functions; Costs; Error correction codes; Fingers; Interleaved codes; Multidimensional systems; OFDM; Phase shift keying; Power control; Upper bound; Golay complementary sequences; OFDM; PMEPR; Root pair;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications and Networking in China, 2009. ChinaCOM 2009. Fourth International Conference on
Conference_Location :
Xian
Print_ISBN :
978-1-4244-4337-6
Electronic_ISBN :
978-1-4244-4337-6
Type :
conf
DOI :
10.1109/CHINACOM.2009.5339952
Filename :
5339952
Link To Document :
بازگشت