DocumentCode :
2492708
Title :
Parameter estimation via artificial data generation with the “two-stage” approach
Author :
Garatti, Simone ; Bittanti, Sergio
Author_Institution :
Dipt. di Elettron. ed Inf., Politec. di Milano, Milan
fYear :
2008
fDate :
25-27 June 2008
Firstpage :
5605
Lastpage :
5610
Abstract :
In this paper, we consider one of the most classical estimation problem, that of identifying an unknown parameter in a given model from measurements of input/output data. We present a new method named the two-stage approach which provides efficient estimates. The method is based on the preliminary generation of artificial data, and it is fully non-Bayesian. In this way, it is possible to avoid the well known difficulties encountered when resorting to Kalman filtering techniques in parameter estimation.
Keywords :
Kalman filters; data handling; parameter estimation; Kalman filtering techniques; artificial data generation; artificial data preliminary generation; parameter estimation; two-stage approach; Automation; Convergence; Equations; Filtering; Intelligent control; Jacobian matrices; Kalman filters; Noise generators; Parameter estimation; State estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on
Conference_Location :
Chongqing
Print_ISBN :
978-1-4244-2113-8
Electronic_ISBN :
978-1-4244-2114-5
Type :
conf
DOI :
10.1109/WCICA.2008.4593842
Filename :
4593842
Link To Document :
بازگشت