Title :
Time series AR model parameter estimation with missing observation data
Author :
Ding, Jie ; Chen, Xiaoming ; Ding, Feng
Author_Institution :
Control Sci. & Eng. Res. Center, Jiangnan Univ., Wuxi
Abstract :
This paper focuses on identification problems of auto-regression (AR) models with missing output observation data. The standard least squares algorithm cannot be applied to the AR models due to the missing output data. To estimate the parameters of the AR models, we employ the polynomial transformation technique to transform the AR models into the auto-regression moving average (ARMA) models, which can be identified from available scarce observation data. Then, we analyze the convergence properties of the algorithm in details and give an example to test and illustrate the algorithm involved.
Keywords :
autoregressive moving average processes; least squares approximations; parameter estimation; time series; autoregression moving average models; least squares algorithm; missing observation data; missing output observation data; parameter estimation; time series; Algorithm design and analysis; Automation; Convergence; Data analysis; Data engineering; Intelligent control; Least squares approximation; Least squares methods; Parameter estimation; Polynomials; AR models; convergence properties; extended least squares; missing data; parameter estimation; recursive identification;
Conference_Titel :
Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on
Conference_Location :
Chongqing
Print_ISBN :
978-1-4244-2113-8
Electronic_ISBN :
978-1-4244-2114-5
DOI :
10.1109/WCICA.2008.4593847