• DocumentCode
    2492907
  • Title

    Hierarchies of autoassociators

  • Author

    Weingessel, A. ; Bischof, H. ; Hornik, K.

  • Author_Institution
    Inst. fur Statistik und Wahrscheinlichkeitstheorie, Tech. Univ. Wien, Austria
  • Volume
    4
  • fYear
    1996
  • fDate
    25-29 Aug 1996
  • Firstpage
    200
  • Abstract
    The principal component pyramid is a hierarchical neural network which can successfully be employed in image compression and feature extraction of images. Previously, the construction of the network from the corresponding pyramid was done on a case by case basis. In this paper we automate this process by giving formulas describing the size of the network and the number of weight constraints in the net
  • Keywords
    associative processing; data compression; feature extraction; image processing; network topology; neural nets; autoassociators; feature extraction; hierarchical neural network; image compression; network size; network topology; principal component pyramid; weight constraints; Feature extraction; Filtering; Image analysis; Image coding; Image sampling; Network topology; Neural networks; Principal component analysis;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition, 1996., Proceedings of the 13th International Conference on
  • Conference_Location
    Vienna
  • ISSN
    1051-4651
  • Print_ISBN
    0-8186-7282-X
  • Type

    conf

  • DOI
    10.1109/ICPR.1996.547415
  • Filename
    547415