DocumentCode :
2495353
Title :
Study on combining subtractive clustering with fuzzy c-means clustering
Author :
Liu, Wen-yuan ; Xiao, C. Hun-jing ; Wang, Bao-wen ; Shi, Yan ; Fang, Shu-fen
Volume :
5
fYear :
2003
fDate :
2-5 Nov. 2003
Firstpage :
2659
Abstract :
It is very sensitive to its initial value when we use fuzzy c-means (FCM) for fuzzy clustering. It will fall into local optimum solution if the enactment of initial value is not good, and it requests us to give the number of clustering before we use it. So we will use subtractive clustering to initialize the initial value of FCM before we use FCM to put up fuzzy clustering. Then we will gain the optimum solution, speed up the rate of convergence and need not give the cluster number beforehand.
Keywords :
convergence; fuzzy set theory; pattern clustering; FCM; fuzzy c-means clustering; fuzzy clustering; local optimum solution; rate of convergence; subtractive clustering; Clustering algorithms; Density measurement; Engineering management; Fuzzy systems; Guidelines; Image segmentation; Management information systems; Pattern recognition; Smoothing methods; Technology management;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning and Cybernetics, 2003 International Conference on
Print_ISBN :
0-7803-8131-9
Type :
conf
DOI :
10.1109/ICMLC.2003.1259984
Filename :
1259984
Link To Document :
بازگشت