• DocumentCode
    2496615
  • Title

    A speedy model parameter optimization algorithm of support vector machines

  • Author

    Chen, Zengzhao ; Liu, Chungui ; Yang, Yang ; He, Xiuling ; Don, Cailin

  • Author_Institution
    Math. & Stat. Sch., Central China Normal Univ., Wuhan
  • fYear
    2008
  • fDate
    25-27 June 2008
  • Firstpage
    7362
  • Lastpage
    7367
  • Abstract
    A speedy parameter optimization algorithm of SVM model is proposed. The algorithm selects a subset from the original training set, and optimizes respectively to ensure the bound of the parameters , then searches the optimum in the smaller range. Experiment shows that optimization of SVM parameters is more speedy and the accuracy is guaranteed in optimizing result.
  • Keywords
    learning (artificial intelligence); optimisation; search problems; set theory; support vector machines; search problem; speedy parameter optimization algorithm; subset theory; support vector machine model; Automation; Character recognition; Electronic mail; Intelligent control; Mathematical model; Mathematics; Noise measurement; Research and development; Statistics; Support vector machines; Chinese character recognition; model parameter optimization; support vector machine;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on
  • Conference_Location
    Chongqing
  • Print_ISBN
    978-1-4244-2113-8
  • Electronic_ISBN
    978-1-4244-2114-5
  • Type

    conf

  • DOI
    10.1109/WCICA.2008.4594064
  • Filename
    4594064