Title :
Optimal States Estimation of an LTI System using the Unbiased FIR Filter
Author :
Olivera, Roberto ; Olivera, Reynel ; Vite, Osbaldo ; Gamboa, Hamurabi ; Navarrete, Miguel Angel ; Rivera, Claudia Angelica
Author_Institution :
Univ. Autonoma de Zacatecas, Jalpa, Mexico
Abstract :
The unbiased linear finite impulse response (FIR) filter and the two-state Kalman filter are investigated in the optimal estimation of the two state (position and velocity) in a linear time invariant (LTI) systems in presence of additive white Gaussian noise (AWGN). In opposite to the Kalman filter, the unbiased linear FIR filter dońt need previous knowledge about noise process, this algorithm only needs two specific parameters: optimal time step and optimal number of the points in the average. We show that both algorithms produce a similar lower mean square error (MSE).
Keywords :
AWGN; FIR filters; Kalman filters; mean square error methods; state estimation; AWGN; Kalman filter; LTI systems; MSE; additive white Gaussian noise; linear time invariant; mean square error; optimal states estimation; unbiased linear FIR filter; unbiased linear finite impulse response filter; Electronic countermeasures; Finite impulse response filters; Instruments; Kalman filters; State estimation; Vectors; FIR filtering; Kalman filter; LTI systems; mean square error; optimal estimation;
Journal_Title :
Latin America Transactions, IEEE (Revista IEEE America Latina)
DOI :
10.1109/TLA.2015.7069081