• DocumentCode
    2500757
  • Title

    Real time probability density function estimation in sensor networks

  • Author

    Mukherjee, Arpita ; Datta, Uma

  • Author_Institution
    Electron. & Instrum. Lab., Central Mech. Eng. Res. Inst. (CSIR), Durgapur, India
  • fYear
    2010
  • fDate
    15-19 Dec. 2010
  • Firstpage
    1
  • Lastpage
    4
  • Abstract
    The real time probability density function (PDF) estimation of any environmental function from sensor network measurement is addressed. The sensor measurement data is modeled using Gaussian mixture PDFs and an algorithm is proposed to estimate the parameters by maximizing the log likelihood function of the sensor data. Here the real time probability density function (PDF) estimation of environmental function over a geographical space where the sensors are placed has been considered. This algorithm for real time parameter estimation of any environmental function have been validated using some simulated data.
  • Keywords
    probability; wireless sensor networks; Gaussian mixture PDF; parameter estimation; probability density function estimation; wireless sensor network; Clustering algorithms; Data models; Estimation; Probability density function; Real time systems; Signal processing algorithms; Wireless sensor networks; Gaussian Mixture models; log likelihood function; sensor network;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Wireless Communication and Sensor Networks (WCSN), 2010 Sixth International Conference on
  • Conference_Location
    Allahabad
  • Print_ISBN
    978-1-4244-9731-7
  • Type

    conf

  • DOI
    10.1109/WCSN.2010.5712301
  • Filename
    5712301