DocumentCode :
250475
Title :
Unsupervised feature learning for 3D scene labeling
Author :
Lai, Koonchun ; Liefeng Bo ; Fox, D.
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Washington, Seattle, WA, USA
fYear :
2014
fDate :
May 31 2014-June 7 2014
Firstpage :
3050
Lastpage :
3057
Abstract :
This paper presents an approach for labeling objects in 3D scenes. We introduce HMP3D, a hierarchical sparse coding technique for learning features from 3D point cloud data. HMP3D classifiers are trained using a synthetic dataset of virtual scenes generated using CAD models from an online database. Our scene labeling system combines features learned from raw RGB-D images and 3D point clouds directly, without any hand-designed features, to assign an object label to every 3D point in the scene. Experiments on the RGB-D Scenes Dataset v.2 demonstrate that the proposed approach can be used to label indoor scenes containing both small tabletop objects and large furniture pieces.
Keywords :
CAD; image colour analysis; solid modelling; unsupervised learning; virtual reality; 3D point cloud data; 3D scene labeling; CAD model; HMP3D classifiers; RGB-D images; RGB-D scenes dataset v.2; furniture pieces; hand-designed feature; hierarchical sparse coding technique; indoor scenes; learning features; object label; online database; scene labeling system; synthetic dataset; tabletop objects; unsupervised feature learning; virtual scenes; Dictionaries; Feature extraction; Labeling; Matching pursuit algorithms; Solid modeling; Three-dimensional displays; Videos;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation (ICRA), 2014 IEEE International Conference on
Conference_Location :
Hong Kong
Type :
conf
DOI :
10.1109/ICRA.2014.6907298
Filename :
6907298
Link To Document :
بازگشت