• DocumentCode
    2505145
  • Title

    Wavelet-Based Texture Retrieval Using a Mixture of Generalized Gaussian Distributions

  • Author

    Allili, Mohand Saïd

  • Author_Institution
    Dept. d´´Inf. et d´´Ing., Univ. du Quebec en Outaouais, Gatineau, QC, Canada
  • fYear
    2010
  • fDate
    23-26 Aug. 2010
  • Firstpage
    3143
  • Lastpage
    3146
  • Abstract
    In this paper, we address the texture retrieval problem using wavelet distribution. We propose a new statistical scheme to represent the marginal distribution of the wavelet coefficients using a mixture of generalized Gaussian distributions (MoGG). The MoGG allows to capture a wide range of histogram shapes, which provides a better description of texture and enhances texture discrimination. We propose a similarity measurement based on Kullback-Leibler distance (KLD), which is calculated using MCMC Metropolis-Hastings sampling algorithm. We show that our approach yields better texture retrieval results than previous methods using only a single probability density function (pdf) for wavelet representation, or texture energy distribution.
  • Keywords
    Gaussian distribution; image texture; wavelet transforms; Kullback-Leibler distance; MCMC Metropolis-Hastings sampling; histogram shapes; marginal distribution; mixture of generalized Gaussian distribution; probability density function; similarity measurement; statistical scheme; texture discrimination; texture energy distribution; texture retrieval problem; wavelet coefficients; wavelet distribution; wavelet representation; wavelet-based texture retrieval; Accuracy; Approximation methods; Data models; Databases; Hidden Markov models; Histograms; Shape; KLD; Mixture of Generalized Gaussians; avelet decomposition; texture image retrieval;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Pattern Recognition (ICPR), 2010 20th International Conference on
  • Conference_Location
    Istanbul
  • ISSN
    1051-4651
  • Print_ISBN
    978-1-4244-7542-1
  • Type

    conf

  • DOI
    10.1109/ICPR.2010.769
  • Filename
    5597306