DocumentCode :
2507542
Title :
Efficient implementation of the EM algorithm for mammographic image texture analysis with multivariate Gaussian mixtures
Author :
Gallego-Ortiz, Nicolás ; Femandez-Mc-Cann, D.S.
Author_Institution :
Dept. of Electron. & Telecommun. Eng., Univ. de Antioquia, Medellín, Colombia
fYear :
2011
fDate :
28-30 June 2011
Firstpage :
821
Lastpage :
824
Abstract :
In this paper we present an efficient implementation of the EM algorithm for estimating multivariate gaussian mixture model parameters in the context of local-neighborhood image texture analysis. We illustrate its application in a study case of mass detection in mammography, providing a detailed description of a feasible and efficient implementation. Our proposed method overcomes numerical variable underflow problems by means of logarithmic and exponential manipulations and saves computational time using a look up table approach. We reduced computation time to 57.14% with respect to direct computation, achieving numerical conditions for convergence.
Keywords :
diagnostic radiography; expectation-maximisation algorithm; image texture; mammography; medical image processing; table lookup; EM algorithm implementation; exponential manipulations; local neighborhood image texture analysis; logarithmic manipulations; look up table approach; mammographic image texture analysis; mass detection; model parameter estimation; multivariate Gaussian mixture model; Algorithm design and analysis; Computational modeling; Manganese; Numerical models; Pixel; Solid modeling; Table lookup; Convergence of numerical methods; Expectation-maximization algorithms; Image texture analysis; Mammography; Maximum likelihood estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Statistical Signal Processing Workshop (SSP), 2011 IEEE
Conference_Location :
Nice
ISSN :
pending
Print_ISBN :
978-1-4577-0569-4
Type :
conf
DOI :
10.1109/SSP.2011.5967832
Filename :
5967832
Link To Document :
بازگشت