DocumentCode :
2511441
Title :
Adaptive-filtering based dynamic OD matrix estimation
Author :
Dan, Meng ; Zhicai, Juan ; Hongfei, Jia
Author_Institution :
Coll. of Transp., Jilin Univ., ChangChun, China
fYear :
2011
fDate :
23-25 May 2011
Firstpage :
403
Lastpage :
406
Abstract :
This paper proposes one method for the dynamic origin-destination (OD) estimate. Based on the improved Sage-Husa adaptive filtering algorithm which carries on recursive filter´s observation data obtained by time-variable noise statistics estimator, estimate and revision observation noise statistical property, one can suppresses the divergence of the filter and, increase the filter precision. The experiment results indicated that this kind of method has the good performance.
Keywords :
adaptive filters; matrix algebra; recursive filters; statistical analysis; Sage-Husa adaptive filtering algorithm; dynamic origin-destination estimation; matrix estimation; recursive filter observation data; revision observation noise statistical property; time-variable noise statistics estimator; Adaptive filters; Equations; Estimation; Kalman filters; Mathematical model; Transportation; Adaptive-filter; Kalman filter; dynamic OD matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (CCDC), 2011 Chinese
Conference_Location :
Mianyang
Print_ISBN :
978-1-4244-8737-0
Type :
conf
DOI :
10.1109/CCDC.2011.5968212
Filename :
5968212
Link To Document :
بازگشت