DocumentCode :
2512408
Title :
A Bias-Variance Analysis of Bootstrapped Class-Separability Weighting for Error-Correcting Output Code Ensembles
Author :
Smith, R.S. ; Windeatt, T.
Author_Institution :
Centre for Vision, Speech & Signal Process., Univ. of Surrey, Guildford, UK
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
61
Lastpage :
64
Abstract :
We investigate the effects, in terms of a bias-variance decomposition of error, of applying class-separability weighting plus bootstrapping in the construction of error-correcting output code ensembles of binary classifiers. Evidence is presented to show that bias tends to be reduced at low training strength values whilst variance tends to be reduced across the full range. The relative importance of these effects, however, varies depending on the stability of the base classifier type.
Keywords :
bootstrapping; error correction codes; pattern classification; base classifier type stability; bias-variance analysis; bias-variance decomposition; binary classifiers; bootstrapped class-separability weighting; bootstrapping; error-correcting output code ensembles; Artificial neural networks; Decoding; Encoding; Kernel; Polynomials; Support vector machines; Training; bias/variance; bootstrapping; ecoc; weighting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.24
Filename :
5597658
Link To Document :
بازگشت