Title :
A Novel Pose Invariant Face Recognition Approach Using a 2D-3D Searching Strategy
Author :
Dahm, N. ; Yongsheng Gao
Author_Institution :
Sch. of Eng., Griffith Univ., Brisbane, QLD, Australia
Abstract :
Many Face Recognition techniques focus on 2D-2D comparison or 3D-3D comparison, however few techniques explore the idea of cross-dimensional comparison. This paper presents a novel face recognition approach that implements cross-dimensional comparison to solve the issue of pose invariance. Our approach implements a Gabor representation during comparison to allow for variations in texture, illumination, expression and pose. Kernel scaling is used to reduce comparison time during the branching search, which determines the facial pose of input images. The conducted experiments prove the viability of this approach, with our larger kernel experiments returning 91.6% - 100% accuracy on a database comprised of both local data, and data from the USF Human ID 3D database.
Keywords :
face recognition; image representation; image texture; 2D-3D searching strategy; Gabor representation; cross-dimensional comparison; expression variation; illumination variation; kernel scaling; pose invariance; pose invariant face recognition; pose variation; texture variation; Face recognition; Head; Kernel; Probes; Rendering (computer graphics); Solid modeling; Three dimensional displays; 2D-3D; Face Recognition; Pose Invariant;
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
Print_ISBN :
978-1-4244-7542-1
DOI :
10.1109/ICPR.2010.965