• DocumentCode
    25135
  • Title

    Educational Software for Power Quality Analysis

  • Author

    De Yong, D. ; Reineri, C. ; Magnago, F.

  • Author_Institution
    Univ. Nac. de Rio Cuarto (UNRC), Rio Cuarto, Argentina
  • Volume
    11
  • Issue
    1
  • fYear
    2013
  • fDate
    Feb. 2013
  • Firstpage
    479
  • Lastpage
    485
  • Abstract
    This paper presents educational software that allows users to generate, detect and classify electrical power disturbance signals using a Wavelet Transform and Neural Networks based algorithm. This software includes four main modules: a) Signal Acquisition Module that allows the incorporation of waveforms stored in a data base; b) Generation Module which permits the generation of diverse disturbed waveforms; c) Detections Module provides tools to analyze different disturbance detection algorithms and d) Classification Module that determines the disturbance type using different pattern classification methods.
  • Keywords
    computer aided instruction; neural nets; pattern classification; power engineering computing; power engineering education; power supply quality; signal classification; signal detection; waveform analysis; wavelet transforms; classification module; detection module; disturbance detection algorithm; educational software; electrical power disturbance signal classification; electrical power disturbance signal detection; electrical power disturbance signal generation; generation module; neural network-based algorithm; pattern classification method; power quality analysis; signal acquisition module; waveform generation; wavelet transform; Artificial neural networks; Discrete wavelet transforms; Monitoring; Multiresolution analysis; Software; Vectors; Power Quality; Simulation Softwar;
  • fLanguage
    English
  • Journal_Title
    Latin America Transactions, IEEE (Revista IEEE America Latina)
  • Publisher
    ieee
  • ISSN
    1548-0992
  • Type

    jour

  • DOI
    10.1109/TLA.2013.6502849
  • Filename
    6502849