DocumentCode :
2514240
Title :
Identification of Hammerstein-Wiener ARMAX systems using Extended Kalman Filter
Author :
Mansouri, M. ; Tolouei, H. ; Shoorehdeli, M. Aliyari
Author_Institution :
Control Dept., K.N. Toosi Univ. of Technol., Tehran, Iran
fYear :
2011
fDate :
23-25 May 2011
Firstpage :
1110
Lastpage :
1114
Abstract :
In this study, Extended Kalman Filter (EKF) algorithm is developed to estimate the parameters of Hammerstein-Wiener (H-W) ARMAX models. The basic idea is to estimate the original parameters of the identification model, which are appeared in the form of product terms, directly. While, other algorithms like Extended Forgetting Factor Stochastic Gradient (EFG), Extended Stochastic Gradient (ESG), Forgetting Factor Recursive Least Square (FFRLS) and Kalman Filter (KF), estimate parameters in the product form and they need another algorithms such averaging method (AVE method), singular value decomposition method (SVD method) to separate the parameters. So, the computational complexity of the proposed approach decreases. To show the efficiency of this method the results are compared with EFG and ESG method.
Keywords :
Kalman filters; autoregressive moving average processes; identification; nonlinear systems; singular value decomposition; stochastic processes; Hammerstein-Wiener ARMAX systems; Kalman filter algorithm; autoregressive moving average model with exogenous inputs model; averaging method; computational complexity; extended Kalman filter; extended forgetting factor stochastic gradient algorithm; extended stochastic gradient algorithm; forgetting factor recursive least square algorithm; singular value decomposition method; Aerodynamics; Algorithm design and analysis; Heuristic algorithms; Kalman filters; Nonlinear systems; Parameter estimation; Stochastic processes; Extended Forgetting Factor Stochastic Gradient algorithm; Extended Kalman Filter algorithm; Extended Stochastic Gradient algorithm; Hammerstein-Wiener model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference (CCDC), 2011 Chinese
Conference_Location :
Mianyang
Print_ISBN :
978-1-4244-8737-0
Type :
conf
DOI :
10.1109/CCDC.2011.5968351
Filename :
5968351
Link To Document :
بازگشت