DocumentCode :
2514483
Title :
Statistical mechanics of lossy compression for non-monotonic multilayer perceptrons
Author :
Cousseau, Florent ; Mimura, Kazushi ; Okada, Masato
Author_Institution :
Univ. of Tokyo, Chiba
fYear :
2008
fDate :
6-11 July 2008
Firstpage :
509
Lastpage :
513
Abstract :
A lossy data compression scheme for uniformly biased Boolean messages is investigated via statistical mechanics techniques. The present paper utilize tree-like committee machine (committee tree) and tree-like parity machine (parity tree) whose transfer functions are non-monotonic, completing the study of the lossy compression scheme using perceptron-based decoder. The scheme performance at the infinite code length limit is analyzed using the replica method. Both committee and parity treelike networks are shown to saturate the Shannon bound.
Keywords :
data compression; decoding; perceptrons; replica techniques; statistical mechanics; trees (mathematics); Shannon bound; data compression; infinite code length limit; lossy compression; multilayer perceptrons; nonmonotonic perceptrons; parity treelike networks; perceptron-based decoder; replica method; statistical mechanics; transfer functions; tree-like committee machine; tree-like parity machine; uniformly biased Boolean messages; Belief propagation; Data compression; Decoding; Error correction codes; Information theory; Multilayer perceptrons; Performance analysis; Random variables; Rate-distortion; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2008. ISIT 2008. IEEE International Symposium on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4244-2256-2
Electronic_ISBN :
978-1-4244-2257-9
Type :
conf
DOI :
10.1109/ISIT.2008.4595038
Filename :
4595038
Link To Document :
بازگشت