DocumentCode :
2515062
Title :
EKF-SLAM and Machine Learning Techniques for Visual Robot Navigation
Author :
Casarrubias-Vargas, H. ; Petrilli-Barceló, A. ; Bayro-Corrochano, E.
Author_Institution :
CINVESTAV Unidad Guadalajara, Mexico City, Mexico
fYear :
2010
fDate :
23-26 Aug. 2010
Firstpage :
396
Lastpage :
399
Abstract :
In this work we propose the use of machine learning techniques to improve Simultaneous Localization and Mapping (SLAM) using an extended Kalman filter (EKF) and visual information for robot navigation. We are using the Viola and Jones approach for looking specific visual landmarks in environment. The landmarks are used to improve the robot localization in the EKF-SLAM system. Our experiments validate the efficiency of our algorithm.
Keywords :
Kalman filters; SLAM (robots); learning (artificial intelligence); path planning; robot vision; EKF-SLAM; extended Kalman filter; machine learning; simultaneous localization and mapping; visual robot navigation; Cameras; Robot vision systems; Simultaneous localization and mapping; Stereo vision; Three dimensional displays; Uncertainty; EKF; SLAM; tracking;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Pattern Recognition (ICPR), 2010 20th International Conference on
Conference_Location :
Istanbul
ISSN :
1051-4651
Print_ISBN :
978-1-4244-7542-1
Type :
conf
DOI :
10.1109/ICPR.2010.105
Filename :
5597815
Link To Document :
بازگشت