DocumentCode :
2516569
Title :
Bayesian estimation of the entropy of the multivariate Gaussian
Author :
Srivastava, Santosh ; Gupta, Maya R.
Author_Institution :
Fred Hutchinson Cancer Res. Center, Seattle, WA
fYear :
2008
fDate :
6-11 July 2008
Firstpage :
1103
Lastpage :
1107
Abstract :
Estimating the entropy of a Gaussian distribution from samples drawn from the distribution is a difficult problem when the number of samples is smaller than the number of dimensions. A new Bayesian entropy estimator is proposed using an inverted Wishart distribution and a data-dependent prior that handles the small-sample case. Experiments for six different cases show that the proposed estimator provides good performance for the small-sample case compared to the standard nearest-neighbor entropy estimator. Additionally, it is shown that the Bayesian estimate formed by taking the expected entropy minimizes expected Bregman divergence.
Keywords :
Bayes methods; Gaussian distribution; entropy; Bayesian entropy estimator; Bayesian estimation; Gaussian distribution; inverted Wishart distribution; multivariate Gaussian; nearest-neighbor entropy estimator; Bayesian methods; Cancer; Covariance matrix; Entropy; Gaussian distribution; Machine learning; Maximum likelihood estimation; Parameter estimation; Robustness; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2008. ISIT 2008. IEEE International Symposium on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4244-2256-2
Electronic_ISBN :
978-1-4244-2257-9
Type :
conf
DOI :
10.1109/ISIT.2008.4595158
Filename :
4595158
Link To Document :
بازگشت