DocumentCode :
2521935
Title :
On the Roth and Ruckenstein equations for the Guruswami-Sudan algorithm
Author :
Augot, Daniel ; Zeh, Alexander
Author_Institution :
Team SECRET, Paris
fYear :
2008
fDate :
6-11 July 2008
Firstpage :
2620
Lastpage :
2624
Abstract :
In 2000 Roth and Ruckenstein proposed an extended key equation for solving the interpolation step in the Sudan decoding algorithm. Generalizing their idea, a sequence of key equations for the Guruswami-Sudan (GS) algorithm, which is able to list decode a Reed-Solomon code with arbitrary rate, is derived. This extension allows a reduction of the number of equations and therefore a reduction of the algorithmpsilas complexity. Furthermore, we indicate how to adapt the fundamental iterative algorithm for block Hankel matrices and thus solving the GS-interpolation step efficiently.
Keywords :
Hankel matrices; Reed-Solomon codes; computational complexity; decoding; interpolation; iterative methods; Guruswami-Sudan-interpolation; Reed-Solomon code decoding; Roth equation; Ruckenstein equation; Sudan decoding algorithm; algorithm complexity; block Hankel matrices; extended key equation; fundamental iterative algorithm; interpolation step; Equations; Error correction; Helium; Interpolation; Iterative algorithms; Iterative decoding; Lagrangian functions; Polynomials; Reed-Solomon codes; (Extended) Key Equation; Guruswami-Sudan algorithm; Reed-Solomon codes; list decoding; polynomial interpolation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2008. ISIT 2008. IEEE International Symposium on
Conference_Location :
Toronto, ON
Print_ISBN :
978-1-4244-2256-2
Electronic_ISBN :
978-1-4244-2257-9
Type :
conf
DOI :
10.1109/ISIT.2008.4595466
Filename :
4595466
Link To Document :
بازگشت