DocumentCode :
2525661
Title :
Poly-Si Thin Film Transistors: Opportunities for low-cost RF applications
Author :
Kim, Soo Youn ; Loke, Wing-Fai ; Park, Sang Phill ; Jung, Byunghoo ; Roy, Kaushik
Author_Institution :
Sch. of ECE, Purdue Univ., West Lafayette, IN, USA
fYear :
2012
fDate :
May 30 2012-June 1 2012
Firstpage :
1
Lastpage :
4
Abstract :
The demand for low-power and low-cost RF applications such as wireless sensor nodes and radio frequency identification (RFID) have driven the development of new technologies in lieu of bulk CMOS. Low Temperature Polycrystalline Silicon Thin Film Transistors (LTPS TFTs) on glass substrates is one of the promising candidates for its low manufacturing cost. However, due to inherent grain boundaries (GBs) in the channel, poly-Si TFTs suffer from lower carrier mobility compared to bulk CMOS transistors. This has been the critical limiting factor for its use in low-voltage and high-speed operations. In this paper, our device modeling present the potential of optimized LTPS TFTs for high frequency operations - cut off frequency fT ~40 GHz of nFETs. We show that high resistivity channel due to the presence of GBs leads to high linearity and independence from channel length. In addition, glass substrate also presents a major advantage by providing negligible substrate-loss, leading to high quality-factor inductors. With the proposed LTPS TFTs and inductors, we designed an inductive coupling wireless link having 2.7 mW of power consumption. This wireless link demonstrates an upper limit of 408 Mbps data rate with inductive coupling distance of 5 cm between two coupling inductors. The designed wireless link presents new opportunities for low-cost RF applications.
Keywords :
CMOS integrated circuits; carrier mobility; grain boundaries; silicon; thin film transistors; LTPS TFT; RFID; Si; bit rate 408 Mbit/s; bulk CMOS; carrier mobility; glass substrate; grain boundaries; high frequency operation; high quality-factor inductor; high resistivity channel; inductive coupling wireless link; low temperature polycrystalline silicon; low-cost RF application; low-power RF application; poly-Si TFT; poly-Si thin film transistor; power 2.7 mW; radio frequency identification; substrate-loss; wireless sensor nodes; Couplings; Glass; Inductors; Radio frequency; Substrates; Thin film transistors; Wireless communication; grain boundary (GB); inductive coupling; linearity; radio frequency (RF); thin film transistor (TFT);
fLanguage :
English
Publisher :
ieee
Conference_Titel :
IC Design & Technology (ICICDT), 2012 IEEE International Conference on
Conference_Location :
Austin, TX
ISSN :
pending
Print_ISBN :
978-1-4673-0146-6
Electronic_ISBN :
pending
Type :
conf
DOI :
10.1109/ICICDT.2012.6232864
Filename :
6232864
Link To Document :
بازگشت