DocumentCode :
2526458
Title :
Missing Features Restoration Using Clustering Methods
Author :
Rassem, H.T. ; Girija, P.N.
Author_Institution :
Sch. of Comput. Sci. & Eng., Hodeidah Univ., Hodeidah, Yemen
fYear :
2010
fDate :
15-18 Dec. 2010
Firstpage :
123
Lastpage :
126
Abstract :
The performance of the Automatic Speech Recognition (ASR) system reduces greatly when speech is corrupted by noise. In spectrogram representation of a speech signal, after deleting low SNR elements, incomplete spectrogram is obtained. In this case, the speech recognizer should make modifications to spectrogram to restore the missing elements, which is one direction. In another direction speech recognizer should be restoring the missing elements due to deleting low SNR elements before the recognition is performed, which can be done using the spectrogram reconstruction methods. In this paper, some spectrogram reconstruction methods suggested by some researchers are implemented as a toolbox using MATLAB and tested using Sphinx III software under different conditions such as different length of window and different length of utterances. These methods are called clustering statistical methods and tested with Sphinx III software developed by CMU, USA. Our speech corpus consists of 20 males and 20 females, each one has two different utterances.
Keywords :
feature extraction; pattern clustering; signal denoising; signal reconstruction; signal representation; speech recognition; statistical analysis; ASR system; MATLAB; SNR; Sphinx III software; automatic speech recognition system; clustering statistical method; missing feature restoration; spectrogram reconstruction method; spectrogram representation; speech corpus; speech signal denoising; Accuracy; Noise; Noise measurement; Reconstruction algorithms; Spectrogram; Speech; Speech recognition; Spectrogram reconstruction; Speech Recognition; clustering; missssing features; nismatching;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signal-Image Technology and Internet-Based Systems (SITIS), 2010 Sixth International Conference on
Conference_Location :
Kuala Lumpur
Print_ISBN :
978-1-4244-9527-6
Electronic_ISBN :
978-0-7695-4319-2
Type :
conf
DOI :
10.1109/SITIS.2010.30
Filename :
5714540
Link To Document :
بازگشت