DocumentCode :
2526839
Title :
Radial basis function networks with quantized parameters
Author :
Lucks, Marcio B. ; Oki, Nobuo
Author_Institution :
UNESP (Univ. Estadual Paulista), Ilha Solteira
fYear :
2008
fDate :
14-16 July 2008
Firstpage :
23
Lastpage :
27
Abstract :
A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications.
Keywords :
function approximation; radial basis function networks; parameter quantization; quantized parameters; radial basis function networks; sinusoidal function approximation; Artificial neural networks; Circuit simulation; Computational modeling; Computer networks; Computer simulation; Function approximation; Hardware; Parallel processing; Quantization; Radial basis function networks; Function Approximation; Quantized Parameters; Radial Basis Function Network;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence for Measurement Systems and Applications, 2008. CIMSA 2008. 2008 IEEE International Conference on
Conference_Location :
Istanbul
Print_ISBN :
978-1-4244-2305-7
Electronic_ISBN :
978-1-4244-2306-4
Type :
conf
DOI :
10.1109/CIMSA.2008.4595826
Filename :
4595826
Link To Document :
بازگشت