• DocumentCode
    2530441
  • Title

    On motion planning with six degrees of freedom: Solving the intersection problems in configuration space

  • Author

    Donald, B.

  • Author_Institution
    Massachusetts Institute of Technology Cambridge, MA
  • Volume
    2
  • fYear
    1985
  • fDate
    31107
  • Firstpage
    536
  • Lastpage
    541
  • Abstract
    The Movers´ problem is to find a continuous, collision-free path for a moving object through an environment containing obstacles. The classical formulation of the three-dimensional Movers´ problem is as fellows: given an arbitrary rigid polyhedral moving object P with three translational and three rotational degrees of freedom, find a contineous, collision-free path taking P from some initial configuration to a desired goal configuration. The six degree or freedom Movers´ problem may be transformed into a point, navigation problem in a six-dimensional configuration space (called C-Space). The C-Space obstacles, which characterize the physically unachievable configurations, are directly represented by six-dimensional manifolds whose boundaries are five dimensional C-surfaces. By characterizing these surfaces and their intersections, collision-free paths may be found by the closure of three operators which (i) slide along 5-dimensional level C-surfaces parallel to C-Space obstacles; (ii) slide along 1- to 4-dimensional intersections of level C-surfaces; and (iii) jump between 6-dimensional obstacles. We show how to construct and represent C-surfaces and their intersection manifolds. We also demonstrate how to intersect trajectories with the boundaries of C</-Space obstacles. The theory and representations we develop extend to Cartesian manipulators with six degrees of freedom.
  • Keywords
    Laboratories; Space technology;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Robotics and Automation. Proceedings. 1985 IEEE International Conference on
  • Type

    conf

  • DOI
    10.1109/ROBOT.1985.1087334
  • Filename
    1087334