DocumentCode :
253123
Title :
Accelerating convolution Coding & Viterbi decodingon GPUs using OpenCL
Author :
Gautam, Himanshu ; Srinivasa, Pradeep ; Kannan, S.
Author_Institution :
High Performance Comput. - Center Of Excellence, HCL Technol. Ltd., Bengaluru, India
fYear :
2014
fDate :
9-11 May 2014
Firstpage :
1
Lastpage :
9
Abstract :
This paper is an attempt to accelerate the convolution Encoding and Viterbi most-likelihood decoding algorithms on Graphics Processing Units (GPUs) using Open Computing Language (OpenCL). Several parallel decomposition schemes are explored, to harness the massively parallel architecture of the GPU. We observed encoding throughput up to 467 Gbps and decoding throughput up to 391 Mbps for a Constraint Length of 7 and a Code Rate of ½ using AMD Radeon HD 7970 GPU. We have also tuned our OpenCL implementation by varying a number of configurable attributes of our implementation and have identified the best performing configurations on AMD GPU, NVIDIA GPU and Intel CPU.
Keywords :
Viterbi decoding; convolutional codes; graphics processing units; parallel architectures; AMD GPU; AMD Radeon HD 7970 GPU; Intel CPU; NVIDIA GPU; OpenCL implementation; Viterbi decoding; Viterbi most-likelihood decoding algorithms; configurable attributes; convolution coding; convolution encoding; decoding throughput; graphics processing units; open computing language; parallel architecture; parallel decomposition scheme; Computer architecture; Decoding; Encoding; Graphics processing units; Quantization (signal); Convolution Codes; Error Correcting Codes(ECC); Forward Error Correction(FEC); GPGPU; Graphics Core Next(GCN); OpenCL; Viterbi Most-likelihood Decoder;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Recent Advances and Innovations in Engineering (ICRAIE), 2014
Conference_Location :
Jaipur
Print_ISBN :
978-1-4799-4041-7
Type :
conf
DOI :
10.1109/ICRAIE.2014.6909193
Filename :
6909193
Link To Document :
بازگشت