DocumentCode
25314
Title
True ML Estimator for the Location Parameter of the Generalized Gaussian Distribution with p = 4
Author
Beaulieu, Norman C. ; Qintian Guo
Author_Institution
Dept. of Electr. & Comput. Eng., Univ. of Alberta, Edmonton, AB, Canada
Volume
17
Issue
1
fYear
2013
fDate
Jan-13
Firstpage
155
Lastpage
157
Abstract
Estimation of the location parameter of the generalized Gaussian distribution with shape parameter p=4 is studied and an explicit solution for the maximum likelihood estimator is derived. The Cramér Rao lower bound is derived and the mean square error of the new estimator is compared to it. The new maximum likelihood estimator attains the Cramér Rao lower bound for a moderate number of samples. Simulation results show the explicit maximum likelihood estimator has superior performance compared to the mean estimator and slightly better performance than the moment/Newton-step estimator. The new maximum likelihood estimator has similar computational complexity to the moment/Newton-step estimator.
Keywords
Gaussian distribution; Newton method; computational complexity; maximum likelihood estimation; mean square error methods; method of moments; parameter estimation; signal processing; Cramér Rao lower bound; computational complexity; generalized Gaussian distribution; location parameter estimation; maximum likelihood estimator; mean square error; moment-Newton-step estimator; Computational complexity; Equations; Gaussian distribution; Mathematical model; Maximum likelihood estimation; Mean square error methods; Noise; Generalized Gaussian distribution (GGD); location parameter; maximum likelihood (ML) estimator;
fLanguage
English
Journal_Title
Communications Letters, IEEE
Publisher
ieee
ISSN
1089-7798
Type
jour
DOI
10.1109/LCOMM.2012.12.121706
Filename
6418086
Link To Document