DocumentCode :
2531641
Title :
A new parameter optimization algorithm of SVM
Author :
Mingzhi Li ; Yong Liu ; Junhua Wang
Author_Institution :
Beijing Univ. of Posts & Telecommun., Beijing, China
fYear :
2011
fDate :
28-30 Oct. 2011
Firstpage :
174
Lastpage :
178
Abstract :
The proper selection of parameters, i.e. RBF kernel parameter g, penalty factor c, non-sensitive coefficient ε of SVM model can optimize the performance of Supporting Vector Machine (SVM). The most commonly used approach is grid search. However, when the data set is large, a terribly long time will be introduced. In order to reduce the selection time of optimal parameters, we propose a new heuristic search algorithm (HS-SVM). The proposed algorithm firstly finds the parameter combinations (c, g) with N minimum MSEs by setting randomly constant ε .The N selected (c, g)pairs are integrated with all possible ε to do cross-validation to get parameter combination (c, g, ε) with minimum MSE. The corresponding parameter ε is regarded as the best. Then this ε is combined with the prior N combinations (c, g) to do the cross-validation of SVM. The parameter combination with minimum MSE is the optimal. Experiments show that the proposed algorithm is more efficient than the gird search.
Keywords :
optimisation; search problems; support vector machines; HS-SVM; RBF kernel parameter; SVM model; grid search; heuristic search algorithm; parameter optimization algorithm; penalty factor; selection time reduction; supporting vector machine; HS-SVR; RBF; SVM; gird search; kernel parameter g; penalty factor c; slack variable ε;
fLanguage :
English
Publisher :
iet
Conference_Titel :
Advanced Intelligence and Awareness Internet (AIAI 2011), 2011 International Conference on
Conference_Location :
Shenzhen
Electronic_ISBN :
978-1-84919-471-6
Type :
conf
DOI :
10.1049/cp.2011.1451
Filename :
6233220
Link To Document :
بازگشت