DocumentCode :
2540340
Title :
Learning to control planar hitting motions in a minigolf-like task
Author :
Kronander, Klas ; Khansari-Zadeh, Mohammad S M ; Billard, Aude
Author_Institution :
Learning Algorithms & Syst. Lab. (LASA), Ecole Polytech. Fed. de Lausanne (EPFL), Lausanne, Switzerland
fYear :
2011
fDate :
25-30 Sept. 2011
Firstpage :
710
Lastpage :
717
Abstract :
A current trend in robotics is to define robot tasks using a combination of superimposed motion patterns. For maximum versatility of such motion patterns, they should be easily and efficiently adaptable for situations beyond those for which the motion was originally designed. In this work, we show how a challenging minigolf-like task can be efficiently learned by the robot using a basic hitting motion model and a task-specific adaptation of the hitting parameters: hitting speed and hitting angle. We propose an approach to learn the hitting parameters for a minigolf field using a set of provided examples. This is a non-trivial problem since the successful choice of hitting parameters generally represent a highly non-linear, multi-valued map from the situation-representation to the hitting parameters. We show that by limiting the problem to learning one combination of hitting parameters for each input, a high-performance model of the hitting parameters can be learned using only a small set of training data. We compare two statistical methods, Gaussian Process Regression (GPR) and Gaussian Mixture Regression (GMR) in the context of inferring hitting parameters for the minigolf task. We validate our approach on the 7 degrees of freedom Barrett WAM robotic arm in both a simulated and real environment.
Keywords :
Gaussian processes; learning systems; mobile robots; motion control; regression analysis; sport; 7 dof Barrett WAM robotic arm; GMR; GPR; Gaussian mixture regression; Gaussian process regression; hitting angle; hitting motion model; hitting parameters; hitting speed; maximum versatility; minigolf field; minigolf-like task; multivalued map; nonlinear map; planar hitting motions control; robot tasks; robotics; situation-representation; statistical methods; superimposed motion patterns; task-specific adaptation; training data; Ground penetrating radar; Robots; Sports equipment; Training; Training data; Trajectory; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on
Conference_Location :
San Francisco, CA
ISSN :
2153-0858
Print_ISBN :
978-1-61284-454-1
Type :
conf
DOI :
10.1109/IROS.2011.6094402
Filename :
6094402
Link To Document :
بازگشت