DocumentCode :
2543389
Title :
Feature enhancement for mean-shift based object tracking
Author :
Gamage, D.S. ; Samarakoon, B. ; Dabarera, R. ; Handagala, S.M. ; Rodrigo, R.
Author_Institution :
Dept. of Electron. & Telecommun. Eng., Univ. of Moratuwa, Moratuwa, Sri Lanka
fYear :
2010
fDate :
17-19 Dec. 2010
Firstpage :
282
Lastpage :
285
Abstract :
In object tracking identifying the best feature which discriminates object and background improves the performance. Most of the existing methods do not consider the suitability of such features for the tracker. Here we enhance the discriminative features which elevate the tracker performance. To accommodate object and background variations over time we dynamically update the best feature using a distance measure. We demonstrate the performance of the resulting systems on the UNIVERSITÄT KARLSRUHE Image Sequences.
Keywords :
feature extraction; image sequences; object detection; tracking; UNIVERSITÄT KARLSRUHE image sequence; background variations; discriminative features; feature enhancement; mean shift based object tracking; Histograms; Pixel; Robustness; Object tracking; dynamic update; feature enhancement; sigmoid image;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information and Automation for Sustainability (ICIAFs), 2010 5th International Conference on
Conference_Location :
Colombo
Print_ISBN :
978-1-4244-8549-9
Type :
conf
DOI :
10.1109/ICIAFS.2010.5715674
Filename :
5715674
Link To Document :
بازگشت