DocumentCode
2544801
Title
Detection of more uncorrelated Gaussian sources than sensors using fully augmentable sparse antenna arrays
Author
Abramovich, Yuri I. ; Spencer, Nicholas K. ; Gorakhov, A.Y.
Author_Institution
Cooperative Res. Centre for Sensor Signal & Inf. Processing, Mawson Lakes, SA, Australia
fYear
2000
fDate
2000
Firstpage
139
Lastpage
143
Abstract
We introduce a new approach to the detection problem for “fully augmentable” arrays (whose set of intersensor differences is complete). We propose a transformation of the directly augmented (non-positive-definite) Toeplitz matrix into a p.d. Toeplitz matrix Tμ with the proper number of equal minimum eigenvalues, appropriate for the candidate number of sources μ. Comparison of the results of these best-fit transformations over the range of candidates then allows us to select the most likely number of sources mˆ using traditional criteria. Simulation results demonstrate the high performance of this method
Keywords
Gaussian processes; Toeplitz matrices; antenna arrays; array signal processing; direction-of-arrival estimation; eigenvalues and eigenfunctions; linear antenna arrays; signal detection; DOA estimation; augmentable sparse antenna arrays; best-fit transformations; detection problem; direction-of-arrival estimation; intersensor differences; minimum eigenvalues; nonpositive-definite Toeplitz matrix; performance; positive-definite Toeplitz matrix; simulation results; sparse linear antenna array; uncorrelated Gaussian sources; Antenna arrays; Australia; Covariance matrix; Direction of arrival estimation; Eigenvalues and eigenfunctions; Information processing; Lakes; Sensor arrays; Signal processing; Statistics;
fLanguage
English
Publisher
ieee
Conference_Titel
Sensor Array and Multichannel Signal Processing Workshop. 2000. Proceedings of the 2000 IEEE
Conference_Location
Cambridge, MA
Print_ISBN
0-7803-6339-6
Type
conf
DOI
10.1109/SAM.2000.877985
Filename
877985
Link To Document