DocumentCode :
2545226
Title :
Automatic sizing of neural networks for function approximation
Author :
Rigoni, Enrico ; Lovison, Alberto
Author_Institution :
Esteco srl, Trieste
fYear :
2007
fDate :
7-10 Oct. 2007
Firstpage :
2005
Lastpage :
2010
Abstract :
Neural networks (NN) are a very efficient and powerful function approximation tool. Inspired by the brain structure and functions, NN are usually trained with backpropagation learning algorithm. A detailed benchmark on standard functions is provided, supporting in particular the automatic choice of the number of neurons in the hidden layer.
Keywords :
backpropagation; function approximation; neural nets; automatic sizing; backpropagation learning algorithm; brain structure; hidden layer; neural networks; powerful function approximation tool; Backpropagation algorithms; Biological neural networks; Brain; Feedforward neural networks; Function approximation; Multi-layer neural network; Neural networks; Neurons; Training data; Transfer functions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Man and Cybernetics, 2007. ISIC. IEEE International Conference on
Conference_Location :
Montreal, Que.
Print_ISBN :
978-1-4244-0990-7
Electronic_ISBN :
978-1-4244-0991-4
Type :
conf
DOI :
10.1109/ICSMC.2007.4413933
Filename :
4413933
Link To Document :
بازگشت