DocumentCode :
2549949
Title :
A linear algorithm for embedding of cycles in crossed cubes
Author :
Lai, Chia-Jui ; Tsai, Chang-Hsiung
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Dong Hwa Univ., Hualien, Taiwan
fYear :
2012
fDate :
29-31 May 2012
Firstpage :
2057
Lastpage :
2060
Abstract :
In this paper, we consider the problem of embedding a cycle containing number of nodes from 4 to 2n through a prescribed edge in an n-dimensional crossed cube CQn. Its theoretical proofs have been proposed in the literature. The main contribution of this paper is providing a systematic O(l) algorithm to find a cycle of length l containing (u, v) in CQn for any (u, v) ∈ E(CQn) and any integer l with 4 ≤ l ≤ 2n.
Keywords :
hypercube networks; linear programming; cycle embedding; edge-pancyclic; embedding algorithm; integer; interconnection network; linear algorithm; n-dimensional crossed cube; Algorithm design and analysis; Hypercubes; Signal processing algorithms; Systematics; Zinc; Interconnection network; crossed cubes; cycles embedding; edge-pancyclic; embedding algorithm;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on
Conference_Location :
Sichuan
Print_ISBN :
978-1-4673-0025-4
Type :
conf
DOI :
10.1109/FSKD.2012.6234187
Filename :
6234187
Link To Document :
بازگشت