Title :
A Theorem of Quasi-Conformal Homomorphism in n-Space
Author :
Qiong, Lin ; Yi-chuan, Wang
Author_Institution :
Dept. of Found. Studies, Logistical Eng. Univ., Chongqing
Abstract :
Let Rn be a n-dimension Euclidean space (n ges 2), D sub Rn is a proper sub-domain of Rn, for x, y isinD, 0 < c < 1, kD(x, y) > log(1/(1-c)). There is a quasi-conformal homomorphism F:Rn rarr Rn with the following properties: (1) kD (x,F(y)) les log(1/(1-c)); (2) F:RnD rarr RnD is the identity; (3) log kD(F) les (1/c)kD(x, y).
Keywords :
conformal mapping; hyperbolic equations; Euclidean space; quasi-conformal homomorphism; quasi-hyperbolic geodesic; quasi-hyperbolic metric; C-Convex curve; quasi-conformal homomorphism; quasi-hyperbolic geodesic; quasi-hyperbolic metric;
Conference_Titel :
Apperceiving Computing and Intelligence Analysis, 2008. ICACIA 2008. International Conference on
Conference_Location :
Chengdu
Print_ISBN :
978-1-4244-3427-5
Electronic_ISBN :
978-1-4244-3426-8
DOI :
10.1109/ICACIA.2008.4769975