DocumentCode :
2551440
Title :
Video stabilization using SIFT-ME features and fuzzy clustering
Author :
Veon, Kevin L. ; Mahoor, Mohammad H. ; Voyles, Richard M.
Author_Institution :
Department of Electrical and Computer Engineering, University of Denver, CO, USA
fYear :
2011
fDate :
25-30 Sept. 2011
Firstpage :
2377
Lastpage :
2382
Abstract :
We propose a digital video stabilization process using information that the scale-invariant feature transform (SIFT) provides for each frame. We use a fuzzy clustering scheme to separate the SIFT features representing global motion from those representing local motion. We then calculate the global orientation change and translation between the current frame and the previous frame. Each frame´s translation and orientation is added to an accumulated total, and a Kalman filter is applied to estimate the desired motion. We provide experimental results from five video sequences using peak signal-to-noise ratio (PSNR) and qualitative analysis.
Keywords :
Cameras; Humans; Kalman filters; Mathematical model; PSNR; Vectors; Video sequences;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on
Conference_Location :
San Francisco, CA
ISSN :
2153-0858
Print_ISBN :
978-1-61284-454-1
Type :
conf
DOI :
10.1109/IROS.2011.6094928
Filename :
6094928
Link To Document :
بازگشت