DocumentCode :
2551921
Title :
A learning algorithm for visual pose estimation of continuum robots
Author :
Reiter, Austin ; Goldman, Roger E. ; Bajo, Andrea ; Iliopoulos, Konstantinos ; Simaan, Nabil ; Allen, Peter K.
Author_Institution :
Dept. of Computer Science, Columbia University, New York, 10027, USA
fYear :
2011
fDate :
25-30 Sept. 2011
Firstpage :
2390
Lastpage :
2396
Abstract :
Continuum robots offer significant advantages for surgical intervention due to their down-scalability, dexterity, and structural flexibility. While structural compliance offers a passive way to guard against trauma, it necessitates robust methods for online estimation of the robot configuration in order to enable precise position and manipulation control. In this paper, we address the pose estimation problem by applying a novel mapping of the robot configuration to a feature descriptor space using stereo vision. We generate a mapping of known features through a supervised learning algorithm that relates the feature descriptor to known ground truth. Features are represented in a reduced sub-space, which we call eigen-features. The descriptor provides some robustness to occlusions, which are inherent to surgical environments, and the methodology that we describe can be applied to multi-segment continuum robots for closed-loop control. Experimental validation on a single-segment continuum robot demonstrates the robustness and efficacy of the algorithm for configuration estimation. Results show that the errors are in the range of 1°.
Keywords :
Cameras; Feature extraction; Image color analysis; Image segmentation; Manifolds; Robots; Training;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on
Conference_Location :
San Francisco, CA
ISSN :
2153-0858
Print_ISBN :
978-1-61284-454-1
Type :
conf
DOI :
10.1109/IROS.2011.6094947
Filename :
6094947
Link To Document :
بازگشت