Title :
Spurious regression in nonparametric models
Author_Institution :
Res. Center of Chinese Econ. Stat., Tianjin Univ. of Finance & Econ., Tianjin, China
Abstract :
This paper develops the asymptotic theory for the Nadaraya-Watson kernel estimator and local polynomial estimator when two independently integrated processes are used in a nonlinear regression. It is shown that the Nadaraya-Watson kernel estimator and the local polynomial estimator do not possess limiting distributions in this context but actually diverge at rate n1/2 as the sample size n → ∞, and this is slower than that of parameters in linear regression. In spite of the difference in the rate of divergence between the parametric and nonparametric cases, they all can induce spurious regression.
Keywords :
polynomials; regression analysis; Nadaraya-Watson kernel estimator; asymptotic theory; linear regression; local polynomial estimator; nonlinear regression; nonparametric models; spurious regression; Educational institutions; Estimation; Kernel; Limiting; Linear regression; Polynomials; Standards; Integrated processes; Local polynomial estimation; Local time; Nadaraya-Watson kernel estimation; Quadratic variation; Spurious regression;
Conference_Titel :
Fuzzy Systems and Knowledge Discovery (FSKD), 2012 9th International Conference on
Conference_Location :
Sichuan
Print_ISBN :
978-1-4673-0025-4
DOI :
10.1109/FSKD.2012.6234284