DocumentCode :
2553560
Title :
Asynchronous haptic simulation of contacting deformable objects with variable stiffness
Author :
Peterlík, Igor ; Duriez, Christian ; Cotin, Stéphane
Author_Institution :
INRIA - University of Lille, France
fYear :
2011
fDate :
25-30 Sept. 2011
Firstpage :
2608
Lastpage :
2613
Abstract :
This paper presents a new asynchronous approach for haptic rendering of deformable objects. When stiff nonlinear deformations take place, they introduce important and rapid variations of the force sent to the user. This problem is similar to the stiff virtual wall for which a high refresh rate is required to obtain a stable haptic feedback. However, when dealing with several interacting deformable objects, it is usually impossible to simulate all objects at high rates. To address this problem we propose a quasi-static framework that allows for stable interactions of asynchronously computed deformable objects. In the proposed approach, a deformable object can be computed at high refresh rates, while the remaining deformable virtual objects remain computed at low refresh rates. Moreover, contacts and other constraints between the different objects of the virtual environment are accurately solved using a shared Linear Complementarity Problem (LCP). Finally, we demonstrate our method on two test cases: a snap-in example involving non-linear deformations and a virtual thread interacting with a deformable object.
Keywords :
Computational modeling; Deformable models; Haptic interfaces; Instruction sets; Mathematical model; Rendering (computer graphics); Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on
Conference_Location :
San Francisco, CA
ISSN :
2153-0858
Print_ISBN :
978-1-61284-454-1
Type :
conf
DOI :
10.1109/IROS.2011.6095015
Filename :
6095015
Link To Document :
بازگشت