DocumentCode :
2555529
Title :
Interacting multiple model gaussian particle filter
Author :
Liu, Zhigang ; Wang, Jinkuan
Author_Institution :
Insitute of Eng. Optimization & Smart Antenna, Northeastern Univ., Qinhuangdao, China
fYear :
2011
fDate :
21-25 June 2011
Firstpage :
270
Lastpage :
273
Abstract :
For maneuvering target tracking, the interacting multiple model Gaussian particle filter is proposed without resampling, which can avoid the degeneracy in the effective number of particles. The basic idea is to combine the interacting multiple model approach with a Gaussian particle filter and this approach is easy of parallel implementation. Finally, simulation results show the effectiveness of the proposed algorithms.
Keywords :
Gaussian processes; particle filtering (numerical methods); target tracking; multiple model Gaussian particle filter; parallel implementation; target tracking maneuvering; Acceleration; Approximation methods; Equations; Markov processes; Mathematical model; Noise; Target tracking; Gaussian particle filter; Maneuvering target tracking; interacting multiple model; resampling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation (WCICA), 2011 9th World Congress on
Conference_Location :
Taipei
Print_ISBN :
978-1-61284-698-9
Type :
conf
DOI :
10.1109/WCICA.2011.5970741
Filename :
5970741
Link To Document :
بازگشت