DocumentCode :
2560456
Title :
Improved CFC algorithm for template decomposition with guaranteed robustness
Author :
Lin, Yih-Lon ; Teng, Wei-Chih ; Jeng, Jyh-Horng ; Hsieh, Jer-Guang
Author_Institution :
Dept. of Electr. Eng., National Sun Yat-Sen Univ., Kaohsiung, Taiwan
fYear :
2005
fDate :
28-30 May 2005
Firstpage :
102
Lastpage :
105
Abstract :
In this paper, an improved version of CFC algorithm is proposed. The main contribution is the reduction of a dimension in the search space. Moreover, the elements in the reduced search space are entries of control templates of uncoupled CNNs and the corresponding linearly separable Boolean functions are robust in the sense of maximal geometric margin. Illustrative examples demonstrate the efficiency of the proposed method.
Keywords :
Boolean functions; cellular neural nets; computational geometry; search problems; stability; CFC algorithm; cellular neural network; linearly separable Boolean functions; maximal geometric margin; search space dimension reduction; template decomposition; uncoupled CNN; Boolean functions; Cellular neural networks; Hardware; Large-scale systems; Neural networks; Nonlinear circuits; Nonlinear equations; Robust control; Robustness; Signal processing algorithms; Boolean Function; Cellular Neural Network; Linearly Separable; Maximal Margin; Uncoupled CNN;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Cellular Neural Networks and Their Applications, 2005 9th International Workshop on
Print_ISBN :
0-7803-9185-3
Type :
conf
DOI :
10.1109/CNNA.2005.1543171
Filename :
1543171
Link To Document :
بازگشت