DocumentCode :
2562435
Title :
Robust sliding mode control for fuzzy conjugate Lorenz chaotic system
Author :
Cui, Lili ; Wei, Shutao ; Huang, Lijia
Author_Institution :
Shanghai Second Polytech. Univ., Shanghai
fYear :
2008
fDate :
2-4 July 2008
Firstpage :
2621
Lastpage :
2625
Abstract :
The conjugate Lorenz chaotic system is a newly coined chaotic system. In this paper, the Takagi-Sugeno (T-S) fuzzy model for the chaotic system is presented; then based on Lyapunov stability theory and using the linear matrix inequalities (LMIs) technique, the robust sliding mode controller for the T-S fuzzy conjugate Lorenz system with uncertainties was designed. The obtained sliding mode controller guarantees the global fuzzy conjugate Lorenz system confined on the sliding surface is asymptotically stable. Finally, numerical simulations are given to illuminate the effectiveness of the theoretical results.
Keywords :
Lyapunov methods; fuzzy control; linear matrix inequalities; nonlinear control systems; numerical analysis; robust control; variable structure systems; LMIs; Lyapunov stability theory; T-S fuzzy model; Takagi-Sugeno fuzzy model; conjugate Lorenz chaotic system; linear matrix inequalities; numerical simulations; robust sliding mode control; Chaos; Fuzzy control; Fuzzy systems; Linear matrix inequalities; Lyapunov method; Robust control; Robust stability; Sliding mode control; Takagi-Sugeno model; Uncertainty; Chaos; Conjugate Lorenz Chaotic System; Sliding Mode Control; T-S Fuzzy model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control and Decision Conference, 2008. CCDC 2008. Chinese
Conference_Location :
Yantai, Shandong
Print_ISBN :
978-1-4244-1733-9
Electronic_ISBN :
978-1-4244-1734-6
Type :
conf
DOI :
10.1109/CCDC.2008.4597800
Filename :
4597800
Link To Document :
بازگشت