Title :
Dynamic test compaction for synchronous sequential circuits using static compaction techniques
Author :
Pomeranz, Irith ; Reddy, Sudhakar M.
Author_Institution :
Dept. of Electr. & Comput. Eng., Iowa Univ., Iowa City, IA, USA
Abstract :
Short test sequences for synchronous sequential circuits are important in reducing test application time and memory requirements. In addition, dynamic test compaction, where heuristics to generate short test sequences are incorporated into the test generation process, may also reduce test generation time. This is due to the fact that a smaller number of test vectors needs to be generated. We present a dynamic test compaction procedure. The compaction heuristics we use are based on previously proposed static compaction techniques. Conventionally, static compaction is applied as a postprocessing step, after the test sequence has been generated. In the proposed procedure, static compaction techniques are used while the test sequence is being generated, to reduce the need for postprocessing, or static compaction. Compared to other dynamic compaction procedures that generate very short test sequences, the computational overhead involved in the proposed procedure is significantly lower, yet short test sequences are obtained. The proposed techniques can be incorporated into other test generation procedures, to reduce the test lengths they produce
Keywords :
fault diagnosis; logic CAD; logic testing; sequential circuits; compaction heuristics; computational overhead; dynamic test compaction; fault detection; memory requirements; postprocessing step; short test sequences; static compaction techniques; synchronous sequential circuits; test application time; test generation process; test vectors needs; very short test sequences; Application software; Circuit faults; Circuit testing; Cities and towns; Compaction; Computational efficiency; Sequential analysis; Sequential circuits;
Conference_Titel :
Fault Tolerant Computing, 1996., Proceedings of Annual Symposium on
Conference_Location :
Sendai
Print_ISBN :
0-8186-7262-5
DOI :
10.1109/FTCS.1996.534594