DocumentCode :
256722
Title :
Weighted Fusion Kalman Smoother for Fractional Systems
Author :
Xiaojun Sun ; Guangming Yan ; Bo Zhang
Author_Institution :
Dept. of Autom., Heilongjiang Univ., Harbin, China
Volume :
2
fYear :
2014
fDate :
26-27 Aug. 2014
Firstpage :
154
Lastpage :
158
Abstract :
Applying the modern time series analysis method, a weighted measurement fusion fractional Kalman smoother is presented for the linear discrete fractional state-space systems. The detail derivation is given. It is numerically identical to the centralized fusion Kalman smoother, so that it has the global optimality. A simulation example shows its effectiveness.
Keywords :
Kalman filters; optimisation; sensor fusion; smoothing methods; state-space methods; time series; centralized fusion Kalman smoother; fractional systems; global optimality; linear discrete fractional state-space systems; time series analysis method; weighted measurement fusion fractional Kalman smoother; Kalman filters; Measurement uncertainty; Smoothing methods; Sun; Time measurement; Weight measurement; discrete fractional state-space systems; fractional Kalman smoother; information fusion; weighted measurement fusion;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Human-Machine Systems and Cybernetics (IHMSC), 2014 Sixth International Conference on
Conference_Location :
Hangzhou
Print_ISBN :
978-1-4799-4956-4
Type :
conf
DOI :
10.1109/IHMSC.2014.140
Filename :
6911471
Link To Document :
بازگشت