DocumentCode :
2567512
Title :
Concurrent learning for convergence in adaptive control without persistency of excitation
Author :
Chowdhary, Girish ; Johnson, Eric
Author_Institution :
Daniel Guggenheim Sch. of Aerosp. Eng., Georgia Inst. of Technol., Atlanta, GA, USA
fYear :
2010
fDate :
15-17 Dec. 2010
Firstpage :
3674
Lastpage :
3679
Abstract :
We show that for an adaptive controller that uses recorded and instantaneous data concurrently for adaptation, a verifiable condition on linear independence of the recorded data is sufficient to guarantee exponential tracking error and parameter error convergence. This condition is found to be less restrictive and easier to monitor than a condition on persistently exciting exogenous input signal required by traditional adaptive laws that use only instantaneous data for adaptation.
Keywords :
adaptive control; learning systems; adaptive control; concurrent learning; exponential tracking error; parameter error convergence; Adaptation model; Adaptive control; Convergence; Equations; Mathematical model; Parameter estimation; Uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control (CDC), 2010 49th IEEE Conference on
Conference_Location :
Atlanta, GA
ISSN :
0743-1546
Print_ISBN :
978-1-4244-7745-6
Type :
conf
DOI :
10.1109/CDC.2010.5717148
Filename :
5717148
Link To Document :
بازگشت