Title :
Solving Temporally-Cyclic Planning Problems
Author :
Cooper, Martin C. ; Maris, Frédéric ; Régnier, Pierre
Author_Institution :
IRIT, Univ. Paul Sabatier, Toulouse, France
Abstract :
In order to correctly model certain real-world planning problems, it is essential to take into account time. This is the case for problems requiring the concurrent execution of actions (known as temporally-expressive problems). However, we show in this paper that certain existing planners which solve this type of problem are, in fact, incomplete. They cannot guarantee to find a solution to a problem involving sets of cyclically-dependent actions (which we call temporally-cyclic problems). We characterize those temporal planning languages which can express temporally-cyclic problems. We also present a polynomial-time algorithm which transforms a temporally-cyclic problem into an equivalent acyclic problem. Applying our transformation restores the completeness of these temporal planners.
Keywords :
planning (artificial intelligence); polynomials; problem solving; scheduling; temporal reasoning; concurrent execution; equivalent acyclic problem; polynomial-time algorithm; problem solving; real-world planning problems; temporal planning languages; temporally-cyclic planning; Cognition; Concurrent computing; Planning; Production; Search problems; Taxonomy; Transforms; planning; temporally-cyclic; time;
Conference_Titel :
Temporal Representation and Reasoning (TIME), 2010 17th International Symposium on
Conference_Location :
Paris
Print_ISBN :
978-1-4244-8014-2
DOI :
10.1109/TIME.2010.19