DocumentCode
2571328
Title
Analytic solutions to Maxwell´s equations: sinusoidal steady-state and transient space-time problems in transverse magnetic and transverse electric field analysis
Author
Lyshevski, Sergey Edward
Author_Institution
Dept. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA
Volume
1
fYear
1998
fDate
2-5 Jun 1998
Firstpage
88
Abstract
Maxwell´s equations form the basis in electromagnetic field theory. The electromagnetic field, if it exists, satisfies Maxwell´s equations and the boundary conditions associated. These equations are simple in the form but contain the variations of the field quantities throughout three-dimensional space (rectangular, cylindrical, and spherical coordinate systems are used) and time. The general solution to Maxwell´s equations is usually difficult to, find. However, analysis of electromagnetic fields requires one to find the general solution without simplifications and assumptions, and our goal is to obtain explicit analytic solutions to Maxwell´s equations with the corresponding boundary conditions. This paper researches methods and reports a straightforward mathematical foundation for solving Maxwell´s equations in analysis of transverse magnetic (TM) and transverse electric (TE) fields
Keywords
Maxwell equations; boundary-value problems; electric fields; electromagnetic field theory; magnetic fields; transient analysis; Maxwell´s equations; TE fields; TM fields; boundary conditions; cylindrical coordinate system; electromagnetic field theory; explicit analytic solutions; rectangular coordinate system; sinusoidal steady-state problems; spherical coordinate system; transient space-time problems; transverse electric field analysis; transverse magnetic field analysis; Current density; Magnetic analysis; Magnetic fields; Maxwell equations; Space charge; Tellurium; Transient analysis;
fLanguage
English
Publisher
ieee
Conference_Titel
Mathematical Methods in Electromagnetic Theory, 1998. MMET 98. 1998 International Conference on
Conference_Location
Kharkov
Print_ISBN
0-7803-4360-3
Type
conf
DOI
10.1109/MMET.1998.709688
Filename
709688
Link To Document