• DocumentCode
    2572174
  • Title

    Some properties of the Riemannian distance function and the position vector X, with applications to the construction of Lyapunov functions

  • Author

    Pait, Felipe ; Colón, Diego

  • Author_Institution
    Lab. de Automacao e Controle-PTC, Univ. de Sao Paulo, São Paulo, Brazil
  • fYear
    2010
  • fDate
    15-17 Dec. 2010
  • Firstpage
    6277
  • Lastpage
    6280
  • Abstract
    The quadratic distance function on a Riemannian manifold can be expressed in terms of the position vector, which in turn can be constructed using geodesic normal coordinates through consideration of the exponential map. The formulas for the derivative of the distance are useful to study Lyapunov stability of dynamical systems, and to build cost functions for optimal control and estimation.
  • Keywords
    Lyapunov methods; optimal control; stability; Lyapunov functions; Lyapunov stability; Riemannian distance function; Riemannian manifold; dynamical systems; exponential map; geodesic normal coordinates; optimal control; optimal estimation; position vector; quadratic distance function; Geometry; Lyapunov method; Manifolds; Measurement; Stability analysis; Tensile stress; Vectors; Lyapunov functions; Riemannian geometry; geodesic distance;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Decision and Control (CDC), 2010 49th IEEE Conference on
  • Conference_Location
    Atlanta, GA
  • ISSN
    0743-1546
  • Print_ISBN
    978-1-4244-7745-6
  • Type

    conf

  • DOI
    10.1109/CDC.2010.5717398
  • Filename
    5717398