DocumentCode :
2573111
Title :
Data-driven computational models of heart anatomy, mechanics and hemodynamics: An integrated framework
Author :
Mansi, T. ; Mihalef, V. ; Sharma, P. ; Georgescu, B. ; Zheng, X. ; Rapaka, S. ; Kamen, A. ; Mereles, D. ; Steen, H. ; Meder, B. ; Katus, H. ; Comaniciu, D.
Author_Institution :
Corp. Res. & Technol., Image Analytics & Inf., Siemens Corp., Princeton, NJ, USA
fYear :
2012
fDate :
2-5 May 2012
Firstpage :
1434
Lastpage :
1434
Abstract :
Cardiac therapies aim to correct pathological blood flow. Patient-specific therapy planning is challenging due to the large variability in disease cause, location and severity. A predictive framework is therefore needed to assess the optimal treatment for a patient in terms of maximizing effectiveness (blood flow velocity, vorticity, cardiac output, etc.) and minimizing the risk of complications. Multi-physics fluid structure interaction models have been proposed to investigate the function of the bi-ventricular myocardium. Yet, no or only partial patient-specific data have been used due to the lack of efficient methods for accurate modeling of patient´s cardiac anatomy from images. Current imaging technologies enabling assessment of cardiac anatomy, dynamics and tissue structure, we propose an integrated framework for multi-physics heart modeling based on imaging data. Our approach relies on efficient machine learning methods to estimate an accurate and comprehensive model of patient´s anatomy from MRI. A computational model of cardiac electrophysiology and biomechanics is then solved on patient´s anatomy.
Keywords :
bioelectric phenomena; biological tissues; biomechanics; biomedical MRI; cardiovascular system; computational fluid dynamics; diseases; haemodynamics; learning (artificial intelligence); patient treatment; MRI; biomechanics; biventricular myocardium; cardiac anatomy; cardiac dynamics; cardiac electrophysiology; cardiac therapy; computational fluid dynamics; data-driven computational models; disease; heart anatomy; hemodynamics; imaging technology; machine learning method; multiphysics fluid structure interaction model; multiphysics heart modeling; pathological blood flow; patient-specific therapy planning; tissue structure; Analytical models; Biological system modeling; Blood; Computational modeling; Data models; Heart; Mathematical model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Imaging (ISBI), 2012 9th IEEE International Symposium on
Conference_Location :
Barcelona
ISSN :
1945-7928
Print_ISBN :
978-1-4577-1857-1
Type :
conf
DOI :
10.1109/ISBI.2012.6235839
Filename :
6235839
Link To Document :
بازگشت